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Objectives: Surveys for U.S. diabetes surveillance do not reliably distinguish between type 1 and type 2 diabetes,
potentially obscuring trends in type 1 among adults. To validate survey-based algorithms for distinguishing
diabetes type, we linked survey data collected from adult patients with diabetes to a gold standard diabetes type.
Research design and methods: We collected data through a telephone survey of 771 adults with diabetes receiving
care in a large healthcare system in North Carolina. We tested 34 survey classification algorithms utilizing
information on respondents’ report of physician-diagnosed diabetes type, age at onset, diabetes drug use, and
body mass index. Algorithms were evaluated by calculating type 1 and type 2 sensitivity, specificity, positive
predictive value (PPV), and negative predictive value (NPV) relative to a gold standard diagnosis of diabetes type
determined through analysis of EHR data and endocrinologist review of selected cases.

Results: Algorithms based on self-reported type outperformed those based solely on other data elements. The
top-performing algorithm classified as type 1 all respondents who reported type 1 and were prescribed insulin, as
“other diabetes type” all respondents who reported “other,” and as type 2 the remaining respondents (type 1
sensitivity 91.6%, type 1 specificity 98.9%, type 1 PPV 82.5%, type 1 NPV 99.5%). This algorithm performed
well in most demographic subpopulations.

Conclusions: The major federal health surveys should consider including self-reported diabetes type if they do
not already, as the gains in the accuracy of typing are substantial compared to classifications based on other data
elements. This study provides much-needed guidance on the accuracy of survey-based diabetes typing algo-
rithms.

Introduction the nation relies upon to monitor trends in diabetes prevalence and

incidence are unable to reliably distinguish between types. The purpose

Type 1 and type 2 diabetes are distinct clinical conditions with
different average ages of onset, management strategies, associated
complications, and patient outcomes, but with overlap in many phe-
notypic factors. An estimated 90-95 percent of all diabetes cases in
adults are type 2 diabetes with most of the remainder being type 1 [1].
The comparative rarity of type 1 means that surveillance of diabetes is
largely driven by trends in type 2 diabetes. It is therefore important for
surveillance systems to be able to distinguish diabetes type to support
type-specific analyses of morbidity, mortality, medical care costs, and
health-related quality of life. Currently, the large federal surveys that

of this study is to identify the most accurate combination of survey
questions for identifying diabetes type.

The National Health and Nutrition Examination Survey (NHANES),
which allows for diabetes and prediabetes prevalence estimation, in-
cluding undiagnosed cases [2,3], and the Behavioral Risk Factor Sur-
veillance System (BRFSS), which allows state-level diabetes prevalence
estimation for the Centers for Disease Control and Prevention’s (CDC)
Diabetes Atlas [4], do not include self-reported diabetes type. Cur-
rently, efforts to use these surveys to distinguish type rely upon items
assessing diabetes drugs used, body mass index (BMI), and age at
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diagnosis. To our knowledge, there are no studies assessing the validity
of these approaches using a gold standard diagnosis type for survey
respondents.

The California Health Interview Survey (CHIS) as well as the Survey
on Living with Chronic Disease in Canada (SLCDC) include a question
on self-reported diabetes type. CDC and the National Institute of
Diabetes and Digestive and Kidney Disease also supported the inclusion
of questions related to diabetes type and insulin requirements in a
supplement to the 2016 and 2017 National Health Interview Survey
(NHIS). However, it is unknown how accurate self-reported diabetes
type is in these populations, and it is unknown whether typing algo-
rithms including self-reported type are more accurate than those using
other information to distinguish type.

Although several studies have employed items available from na-
tional surveys to develop algorithms for classifying diabetes type, none
of these studies have validated their questions and algorithms against
the contents of the medical record as the gold standard [5-11]. This is a
critical step for confirming the utility of self-reported diabetes type and
the performance of survey algorithms based on other questions relevant
to determining type. In this paper, we report the results of a validation
study of survey-based algorithms for identifying diabetes type using
data collected from adult patients with diabetes from a large healthcare
system compared to a gold standard diabetes type derived from col-
lection of structured and unstructured data from patients’ electronic
health records (EHRs).

Methods
Sample selection and gold standard diabetes type classification

As shown in Fig. 1, we selected a sample of 2,500 adult patients
from the UNC Health Care System (UNCHCS) who were highly likely to
have diabetes based on three years of EHR data (10/1/2014 — 9/30/
2017). We required at least one visit to a primary care or endocrinology
clinic within the prior 18 months. We modified the straw man algo-
rithm used by Klompas and colleagues [12] to find likely diabetes cases,
incorporating diagnosis codes, laboratory tests, and diabetes drugs.
Appendix Table Al provides the specifications of our straw man algo-
rithm. To facilitate detection of the rarer type 1 diabetes, we over-
sampled probable type 1 diabetes by identifying patients with two or
more type 1 diagnosis codes on separate occasions OR one type 1 code
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on the patient’s problem list AND no outpatient prescription for non-
insulin hypoglycemic medications. The sample was further stratified by
age, sex, and race/ethnicity to facilitate testing of algorithms in de-
mographic subpopulations. Our target of 2,500 cases was designed to
yield 1,000 completed surveys, assuming a 40% response rate (achieved
by the similarly designed North Carolina BRFSS) [13].

We developed a gold standard diabetes type for each case through
analysis of both structured and unstructured EHR data. Unstructured
EHR data from chart notes were abstracted by trained staff, including a
nurse practitioner, endocrinologist, and research assistants, to identify
age at diagnosis, historical use of insulin and oral antidiabetic medi-
cations, and other elements not available in diagnosis codes and other
structured data points. To produce a preliminary gold standard diag-
nosis, we applied two quantitative models independently to each case —
a decision tree and a weighting equation. The decision tree used se-
quential rules to classify patients based on clinical factors (see
Appendix Fig. Al). Straightforward cases were classified at the top of
the tree based on type-congruent diabetes diagnosis codes (the same
codes used in our straw man algorithm) and type-consistent medication
use in the patients’ medical records. More complex cases were classified
using additional data elements (e.g., age at diagnosis, type-specific la-
boratory tests, family history) moving down the tree. In contrast, the
weighting equation simultaneously considered twelve clinical factors
using a scoring system in which clinical characteristics weighed to-
wards or against Type 1 or Type 2 (see Appendix Table A2). Both
methods permitted a classification of “indeterminate.” Any cases for
which the two methods did not agree, plus any cases scored as in-
determinate by one or both methods, were reviewed by an en-
docrinologist to make a final determination of type (N = 282).

A total of 2,465 cases were determined to have diabetes, were not
deceased, and received a gold standard diabetes type at the end of the
process.

Survey design and operations

We designed a telephone survey incorporating widely used and
validated survey items from national and international surveys in-
cluding NHIS, BRFSS, and NHANES. Small adaptations were made to
adjust items for telephone administration; question wording and re-
sponse options for key items in the survey are shown in Appendix Table
A3. We made one modification to the wording used in the 2016-2018

Full Study
Sample

N=2,500

Gold Standard
Chart Review

N=2,465

eStraw man diabetes algorithm used to select sample of 2,500
patients with diabetes from UNC EHR warehouse

Stratified sampling by diabetes type, sex, race/ethnicity, age
group to ensure representation

*Gold standard designation of diabetes type for the full sample through
electronic and manual chart review

eAbstraction of data elements by chart reviewers

*Two quantitative methods used for case assignment: decision tree and
weighting equation

sEndocrinologist review of indeterminate cases and cases on which the
two methods disagreed (N=282)

2,465 cases confirmed to have diabetes remaining in study sample

Telephone
Survey Validation

N=771

eSurvey fielded to 2,433 not opting out
of the study; acheived 771 completes

eClinically informed algorithms
developed

eSurvey algorithms validated against gold
standard for respondents

*Weighting to adjust for sample design
and nonresponse

Fig. 1. Study design.
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NHIS survey for self-reported diabetes type. NHIS asked “What type of
diabetes do you have?” with response options of “type 1, type 2, and
other.” We asked “According to your doctor or other health profes-
sional, what type of diabetes do you have? Is it type 1, type 2, or some
other type? If you don’t remember or weren’t told, that’s OK.” This
revised question wording was included in the 2019 NHIS. In addition to
self-reported diabetes type, we asked whether respondents were on
insulin or non-insulin diabetes medications, the timing of insulin use
(whether within 1 year of diagnosis, whether ever stopped taking in-
sulin), age at diabetes diagnosis, weight and height (for body mass
index), and whether respondents had ever experienced diabetic ketoa-
cidosis.

Eight patients completed cognitive interviews by phone to test the
survey. Once finalized, the survey was translated into Spanish to
minimize language barriers for Spanish-speaking respondents. The
survey was programmed as a Computer Assisted Telephone Interview
(CATI). We sent a pre-notification letter with an opt-out option to the
sample of 2,465 and fielded the survey to those who did not call in to
opt out of the study (32 people opted out; final N = 2,433). Trained
CATI interviewers administered the survey between November 2018
and February 2019. Respondents completing the interview were pro-
vided a gratuity of $25.00. The survey achieved a response rate of
32.7%, collecting data from 771 diabetes patients.

Weighting and analytic design

Base weights were developed using the demographic and type 1
oversample classifications of all UNCHS diabetes patients meeting the
straw man criteria and eligible for sampling (N = 41,614). The base
weight for each case was calculated as the inverse of its selection
probability, which varied by race/ethnicity, gender, age, and type 1
oversample eligibility. The base weight adjusted the sample to reflect
the distribution of cases eligible for sampling, since we enriched our
sample with non-whites, younger individuals, and presumptive type 1
cases. Importantly, the weights correct for a very high oversampling
rate for presumptive type 1 cases, which made up 26.9% of the study
sample but only 5 percent of all cases meeting straw man criteria. The
oversampling optimized our ability to design algorithms for the rarer
type 1 diabetes while the weighting allowed us to test our algorithms in
the “real world” where diabetes cases are dominated by the more
common type 2 diabetes. Base weights were further adjusted for survey
non-response patterns and calibrated through raking to our known
sample totals by race/ethnicity, gender, age, and presumptive type 1.
The raking ensured that weighted totals of respondents who completed
the survey would match the totals of the sampling frame for all of the
sampling strata.

Our analytic strategy involved linking survey data with the gold
standard diabetes type for each case and implementing case definitions
and diabetes typing algorithms from the literature as well as extensions
of these algorithms. To identify the best performing algorithms, we
computed weighted validity statistics (sensitivity, specificity, positive
predictive value (PPV) and negative predictive value (NPV)) for type 1
and type 2 diabetes. Several aggregate validity statistics were also ex-
amined, including the proportion correctly classified by the algorithm
and an average of type 1 sensitivity and PPV. All data management and
validity testing was done using SAS version 9.4 (SAS Institute Inc., Cary,
NO).

Algorithms were selected for testing if they appeared in the litera-
ture and, for newly created algorithms, if they answered clinically-in-
formed questions about the utility of additional survey items for iden-
tifying type 1 diabetes. Examples include testing the added value in
requiring that insulin use begin within a year of diabetes diagnosis,
whether insulin should be required to be continuous, and whether re-
laxing the continuous insulin requirement to include potential type 1
cases who stopped insulin only during the one-year “honeymoon”
period after diagnosis is advantageous. The 33 resulting algorithms
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clustered into three groups based on the algorithms’ most important, or
anchoring, data element: self-reported diabetes type, medication use, or
age at first diagnosis.

We also utilized a machine learning modeling approach, which re-
sulted in one additional algorithm, to ensure we had not missed an
important algorithm for distinguishing type that had not been tested in
prior studies. We built a conditional inference tree that optimized se-
quential partitioning (splitting) of selected survey variables, creating a
decision tree [14]. This modeling technique is advantageous because it
produces a result that can be easily implemented by users of the major
federal health surveys. The stopping criterion for the tree is whether a
potential additional split passes a statistical significance test. A further
split is not made if all potential splits are not statistically significant. We
relied on repeated cross-validation using the same data set to choose the
optimal level of complexity of the model. In each repetition, we ran-
domly split the data into 5 folds. We sequentially used 4 of them to fit a
model, and we measured the performance of each combination on the
remaining fold. The full process of 5-fold cross-validation was repeated
5 times. The average performance across all 25 model fits was used to
select the optimal algorithm. Once fitted, the resulting decision tree was
coded for the full sample, weighted, and evaluated with the validity
statistics discussed above. The conditional inference tree was built in R
version 3.6.0 [15].

Algorithm performance statistics

We used several general principles to guide the assessment of the
algorithms and the selection of the optimal algorithm. First, because the
prevalence of type 1 diabetes is so much lower, it is especially im-
portant to correctly identify these cases. Although each validity statistic
provides information on an algorithm’s performance in a different area,
we prioritized type 1 sensitivity, type 1 PPV, and type 2 specificity
when selecting the top performing algorithm. We also examined the
estimated weighted prevalence of each type in comparison to the
weighted prevalence of the gold standard as a check on the algorithms’
face validity. Finally, we report a weighted percentage of cases that
were correctly classified by the model. This measure incorporates, and
weighs heavily toward, the performance of algorithms in identifying
type 2. Ideally, the top-performing algorithm excels in correctly clas-
sifying all cases of diabetes.

To apply these principles, each of the algorithms was evaluated by
examining its type 1 sensitivity and type 2 specificity. Any algorithms
with values below 70% on either of these metrics were eliminated from
further consideration, as were algorithms with type 1 or type 2 PPV less
than 30%. Because PPV is highly sensitive to prevalence, when weights
are applied the type 1 PPV for many algorithms is low. We therefore
chose a less restrictive cut off for PPV as compared with sensitivity and
specificity.

A complication for clinicians and researchers is the inability to
classify some cases as type 1 or type 2. Among the survey sample, the
gold standard classification included only 16 cases categorized with
indeterminate and “other” types of diabetes. Therefore, the survey al-
gorithms were limited in the capacity to classify those with in-
determinate diabetes. Although some of the survey-based algorithms
also generated classifications of “other,” these other and indeterminate
cases often operated as a source of error, which reflects a naturally-
occurring difficulty in estimating diabetes prevalence by type.

The Institutional Review Boards of both Westat and the UNC ap-
proved the study design and protocol, and the research team ensured
full compliance with all applicable restrictions on the handling and
transfer of Protected Health Information and Personally Identifiable
Information.

Results

Characteristics of the sample reporting a diabetes diagnosis and
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Table 1
Characteristics of survey respondents reporting diabetes (N = 698).

Characteristics Unweighted Sample % Weighted Sample %

Gold Standard Diabetes Type

Type 1 32.2 5.3
Type 2 65.5 94.3
Other/indeterminate 2.3 0.4
Diabetes Drugs in EHR

% using insulin 66.5 42.1
% using non-insulin 54.4 80.2
% on no diabetes drugs 4.6 6.7
Other EHR Information

Mean onset age, years 333 46.8
Mean count of type 1 Dx codes 4.6 0.6
Mean count of type 2 Dx codes 9.0 9.6
Age, years

18-44 29.1 7.6
45-64 42.6 44.8
65+ 28.4 47.6
Sex

Female 51.7 53.9
Male 48.3 46.1
Race/ethnicity

Non-Hispanic white 32.7 65.6
Non-Hispanic black 28.2 26.1
Hispanic 23.1 3.3
Non-Hispanic other 16.0 5.0
Education

Less than high school 17.2 8.6
High school graduate 24.9 28.0
Some college or more 58.0 63.4

Notes: Gold Standard Diabetes Type refers to the “true” diabetes type de-
termined through the use of structured and unstructured electronic health re-
cords data, as opposed to the type reported by respondents on the survey.
EHR = electronic health record; Dx = diagnosis.

completing subsequent items on diabetes type are shown in Table 1.
Almost one-third (32.2%) of respondents had a gold standard diagnosis
of type 1 diabetes. When weights are applied to adjust results to the
UNCHS system’s diabetes population, only 5.3% of the sample is gold
standard type 1. In keeping with this adjustment for our oversampling
of type 1 diabetes patients, when compared with unweighted statistics,
weighted statistics show a smaller percentage using insulin, a larger
percentage using non-insulin diabetes medication, a higher mean age of
onset, and fewer type 1 diagnosis codes in their medical records.
Table 1 also illustrates our oversampling of non-whites and younger
individuals. About 9.5 percent of respondents reported they did not
have diabetes and did not complete diabetes-specific survey items ne-
cessary for determining type. Nearly all of these respondents (97%)
were type 2 by the gold standard. Characteristics of those not reporting
diabetes are shown in Appendix Table A4.

Appendix Table A5 contains the full set of 34 algorithms tested in
this study, organized by the three anchoring data elements of self-re-
ported type, medication use, or diagnosis age. It also includes our ra-
tionale for ruling algorithms out. Diagnosis age-based algorithms
tended to perform poorly when the requirement was that diagnosis
occur before age 30, with type 1 sensitivities less than 80%. While
lifting the age to 40 increased type 1 sensitivity to 84.2%, the positive
predictive values for type 1 and type 2 were less than 30%. Although
algorithms requiring insulin with no non-insulin diabetes medications
slightly outperformed those based on current insulin with or without
additional diabetes medications, we note that use of non-insulin med-
ications for glycemic control among patients with type 1 diabetes is
currently under review by the FDA and the subject of numerous ran-
domized controlled trials [16]. While insulin-only algorithms may
identify patients with type 1 diabetes well today, in the next few years
they may become less reliable for diabetes typing analyses.

The final candidate algorithms were based on self-report (Table 2)
and medication use (Table 3). The model-based conditional inference
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tree is included with self-report algorithms. Despite access to a range of
information about sample members, including their use of medication,
BMI, age at diagnosis, family history, the presence of autoimmune
diseases, and episodes of diabetic ketoacidosis (DKA) and severe hy-
poglycemia, the model optimized with the use of one variable: self-
reported diabetes type. The model selected the split as follows: re-
spondents who report type 1 are classified as type 1, and all others are
classified as type 2.

Algorithms including self-reported diabetes type outperformed al-
gorithms based on medication use by a wide margin, when evaluated
based on the average of type 1 sensitivity and type 1 PPV. We found
that adding the restriction that self-report of type 1 must also be ac-
companied by current insulin use improved our metrics slightly. In
particular, type 1 PPV increased substantially, while type 1 specificity
improved modestly, as did most of the type 2 statistics. The final three
columns in Table 2 evaluate whether additional restrictions, such as
starting insulin within a year of diagnosis and using insulin con-
tinuously, improve algorithm performance. These restrictions reduced
sensitivity and PPV for type 1, while improving type 1 specificity very
slightly and degrading many of the type 2 statistics.

The top-performing candidate algorithm classifies as type 1 anyone
who self-reports type 1 and is also on insulin, classifies as “other”
anyone who reports another form of diabetes, and classifies as type 2
the remainder of the sample. It requires only three survey items: 1) self-
report of diabetes, 2) self-report of diabetes type, and 3) current use of
insulin. The algorithm’s type 1 prevalence closely matched the gold
standard’s type 1 prevalence (5.9% and 5.3%, respectively) and ex-
ceeded all other algorithms in the average of type 1 sensitivity and PPV
(87.1%; type 1 sensitivity 91.6%, type 1 specificity 98.9%, type 1 PPV
82.5%, type 1 NPV 99.5%).

The top-performing algorithm also performed well across most
study subgroups (Table 4 and Appendix Table A4). The average of type
1 sensitivity and PPV was above 80% in most groups. Black and His-
panic respondents, as well as those without a college education, had
average of type 1 sensitivity and PPV below 80%. The algorithm was
particularly good at classifying type 1 among women, those aged 18-44
and 45-64, and whites, based on the average of type 1 sensitivity and
PPV. We found that the overall top-performing algorithm was also the
top-performing algorithm in most subgroups. For blacks, the condi-
tional inference tree-based algorithm achieved a slightly higher average
type 1 sensitivity and PPV (66.8%). For respondents with less than a
high school education, the top performing algorithm assigned type 1 if
the respondent was currently on insulin, started insulin within a year of
diagnosis, and was diagnosed younger than age 40 (type 2 otherwise;
type 1 sensitivity and PPV average of 55.2%).

Conclusions

Distinguishing diabetes type in national and state-based surveys is
important for public health prevention and management strategies. To
date, researchers have used survey items on self-reported diabetes type,
age at onset, and diabetes drug use to distinguish type without guidance
on how accurate these approaches are. The present study provides this
much-needed guidance. To our knowledge, it is the first large-scale
effort to compare survey responses with a known diabetes type to
provide guidance to national surveillance efforts on: 1) items to include
in the major federal health surveys to distinguish type, and 2) how to
combine items to assign the most accurate diabetes type.

We evaluated 34 algorithms for distinguishing type against a gold
standard derived from respondents’ medical records and found that an
algorithm based on self-reported type and insulin use performed the
best. The algorithm was highly sensitive and specific to both type 1 and
type 2 diabetes. We tested algorithms based on anchoring data elements
of self-reported type, diabetes drug use, and age at onset. Algorithms
based on self-reported type performed better than algorithms based on
other anchoring data elements in our study.
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Our results suggest that the major federal health surveys may want
to consider including self-reported diabetes type in future iterations of
the surveys, if they do not already. The cost of adding this question may
be worth the gain in accuracy in identifying diabetes type. Self-reported
diabetes type is a powerful marker for the gold standard type, in-
dicating that our survey respondents were generally aware of their
condition and able to report it accurately. Bullard and colleagues [11]
noted that about 5% of NHIS diabetes respondents reported type 1 but
also did not report being on insulin. In our sample, only 14 respondents
(2%) reported type 1 without also reporting current insulin use. The
lower proportion with incongruous responses may be a result of the
rewording of the question on self-reported type, or better patient-pro-
vider communication on management of type 1 diabetes within our
sample.

While statistical testing from the conditional inference tree did not
show great improvement from adding insulin use to self-report for our
population, the inclusion of insulin use may be important when moving
to a community-based survey population that includes individuals who
do not receive regular medical services and who may not have been told
or do not remember their diabetes type. We required at least one visit to
a primary care or endocrinology clinic within the prior 18 months to
ensure that sufficient data were available in the EHR to make a gold
standard classification for each case. Beyond this requirement, our
sample was extremely diverse, incorporating a majority of non-white
respondents and representation across all age groups.

The inclusion of restrictions on timing of insulin onset relative to
diagnosis, and continuous use of insulin (less any “honeymoon” lapses
in the first year of diagnosis), did not substantially improve the per-
formance of our recommended algorithm. Although they increased the
algorithm’s type 1 specificity, they reduced the measure’s type 1 sen-
sitivity and PPV as well as the weighted percent correctly classified.
This may be partially explained by adult onset type 1 diabetes, which is
often indolent in its presentation and patients may go longer than a year
before needing insulin. Though there may be applications for algo-
rithms that emphasize type 1 specificity, for general surveillance by
type these items may not be necessary.

Our top-performing algorithm was also the top performer in most
study subgroups, but the conditional inference tree-based algorithm
(which uses self-reported type alone) outperformed it slightly among
blacks. Interestingly, the top-performing algorithm among those with
less than a high school education did not use self-reported diabetes type
at all and instead relied on more objective elements including insulin
use and diagnosis age. Those with lower levels of education may not
understand their diabetes as well, and as a result their self-report of
type may be less accurate. Indeed, the survey included a question on
confidence in self-report of diabetes type, and we found much lower
levels of confidence among those with less education. These results
suggest that researchers focused on diabetes among those with less
education may benefit from using an alternative algorithm to distin-
guish type.

The major limitations of our study include a sample of patients from
a single health system in one state and a final response rate lower than
the rate targeted to power subpopulation analysis. The number of re-
sponses also impacted our ability to classify indeterminate or other
cases of diabetes. Although the top-performing algorithm does permit
an outcome of “Other” diabetes type, because only 16 survey re-
spondents had a gold standard determination of indeterminate/other,
we were not able to adequately model this outcome. Small sample sizes
limited our ability to gauge algorithm performance for some targeted
subgroups that were rare in the UNCHS system’s diabetes patient po-
pulation. In particular, the limited pool of type 1 candidates among
blacks and Hispanics hampered our ability to judge algorithm perfor-
mance in these groups.

While the study team curated the sample carefully during the gold
standard development to ensure that all sample members had diabetes,
the survey did not lead with this assumption and offered respondents

Journal of Clinical & Translational Endocrinology 21 (2020) 100231

the opportunity to state that they did not have diabetes (and therefore
to skip all portions of the survey specific to diabetes). The 9.5% of re-
spondents who reported they did not have diabetes agrees with the
work of prior studies finding moderate agreement between self-report
of disease and the medical record [17,18] and cautioning that self-re-
ported rates of many chronic diseases are lower than those obtained
through clinical data [19]. We excluded these cases when testing the
typing algorithms, but we note that these cases are by definition part of
the typing error in the major federal surveys.

This study was the first to comprehensively evaluate diabetes typing
algorithms from survey data against a gold standard derived from pa-
tients’ medical records. These findings help validate the accuracy of
survey questions and their combinations to differentiate type 1 from
type 2 diabetes.
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